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Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice
Boltzmann �LB� models to hydrodynamics beyond the continuum limit �S. Ansumali et al., Phys. Rev. Lett.
98, 124502 �2007��. In this paper, we present a systematic study of the simplest LB kinetic equation—the
nine-bit model in two dimensions—in order to quantify it as a slip flow approximation. Details of the afore-
mentioned analytical solution are presented, and results are extended to include a general shear- and force-
driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent
higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state
flows for all values of rarefaction parameter �Knudsen number�. Results are compared with the slip flow
solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard
nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the
Navier-Stokes approximation.
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I. INTRODUCTION

The emerging field of fluid dynamics at a micrometer
scale has become increasingly important due to fundamental
engineering issues of micro-electromechanical systems �1�.
Recently, much attention was given to the use of lattice Bolt-
zmann �LB� models for simulation of microflows by a num-
ber of groups �2–8�. By now, it is understood that lattice
Boltzmann models form a well-defined hierarchy based on
discrete velocity sets with velocities defined as zeros of Her-
mite polynomials �9� or rational-number approximations
thereof �10�. The LB hierarchy constitutes a novel approxi-
mation of the Boltzmann equation and has to be considered
as an alternative to more standard approaches such as higher-
order hydrodynamics �Burnett or super-Burnett� or Grad’s
moment systems �for a review, see, e.g., �11��. One salient
feature of the LB hierarchy, which is crucial to the present
study and eventually to any realistic application, is that it is
naturally equipped with relevant boundary conditions de-
rived from Maxwell-Boltzmann theory �2�.

Agreement between the LB simulations and kinetic theory
�2�, hydrodynamics with slip boundary conditions �7�, and
molecular dynamics �8� was reported. However, most of
these numerical works rely on simulation with finite accu-
racy, while the crucial question of whether the kinetic equa-
tions underpinning the LBM method are valid physical mod-
els of microflow remains unanswered. Thus, the validity of
LBM cannot be addressed unless a comparison to represen-
tative exact solutions is performed. Needless to say, exact
solutions to nonlinear kinetic equations in realistic geom-
etries are very rare.

In a recent Letter �12�, two of the present authors estab-
lished an analytical approach to the lattice Boltzmann hier-

archy of models, and found solutions for the first two mod-
els, namely the standard 9-bit model and the 16-bit model in
the stationary nonlinear Couette flow in two dimensions. The
solution demonstrated that, while the standard LB model
amounts to a slip velocity approximation, the next members
of the LB hierarchy do describe physically relevant Knudsen
layers in the velocity profile. Thus, the LB hierarchy may
provide a different—and computationally advantageous—
approach to the physical phenomena in rarefied gases.

In this paper, we extend the results of Ref. �12� for the
standard LB model. Specifically, we provide details of the
exact solution of the D2Q9 LB model for the flow between
parallel shearing plates �Couette flow�, and we extend this
solution to the presence of a forcing term in the kinetic equa-
tion, which mimics a flow driven by a pressure drop �Poi-
seuille flow�. We use these solutions in order to quantify the
accuracy of the standard LB model as a slip flow model. This
quantification is usually done by defining a slip boundary
condition in such a way that the velocity profile obtained
from the Navier-Stokes equations with a slip boundary con-
dition matches that obtained from a solution of kinetic equa-
tions for Poiseuille flow �see, for example, �13��. Specifi-
cally, in this formulation, for the slip boundary condition we
have

�uslip�wall = A1Kn� �ux

� n̂
�

wall

− A2Kn2� �2ux

� n̂2 �
wall

, �1�

where Kn is the Knudsen number �ratio of mean free path to
the width of the slab; a more precise definition is given be-
low, see Eq. �55��, the derivative of the velocity is taken in
the direction of the inner normal to the wall, and where co-
efficients A1 and A2 are found by using the velocity profile
obtained from a solution �exact or approximate� of the Bolt-
zmann equation. These coefficients provide a convenient
way to compare the accuracy of different approximations to
the Boltzmann equation as many experimentally relevant
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quantities depend directly on these two coefficients. For ex-
ample, in the Poiseuille flow, the minimum in the flow rate is
observed at

1

Knmin
= 2�3A2, �2�

and the reduced slip velocity at the wall u* is

u* =
uslip

ucenterline
=

A1Kn + 2A2Kn2

1

4
+ A1Kn + 2A2Kn2

, �3�

where uslip is the slip velocity at the wall and ucenterline is the
Poiseuille flow velocity at the centerline �i.e., the maximum�
at a given Kn. We show in the present work that

A1 = 1, A2 =
2

3
�4�

for the lattice Boltzmann model with nine velocities. These
values can be compared with the available approximate so-
lution of the Boltzmann-Bhatnagar-Gross-Krook �BGK�
equation by Cercignani, which gives

A1 = 0.8297, A2 = 0.5108. �5�

In Fig. 1, we compare the slip velocity obtained from an
exact solution of the LB model with that obtained from an
approximate solution of the Boltzmann-BGK equation. Simi-
larly, in Fig. 2, we compare the flow rate as a function of
Knudsen number for these two approaches. From these two
plots, we see that the basic model of the LB hierarchy, the
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FIG. 1. Slip velocity versus
Knudsen numbers for the
Poiseuille flow.
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nonlinear D2Q9 model, can be quantified as the slip flow
model for microflows.

The outline of the paper is as follows. In Sec. II, we recall
the kinetic equation pertinent to the LB model with nine
discrete velocities in two spatial dimensions, the D2Q9
model. We consider a general case that also includes a force
term, and two popular forms of the force are presented. In
Sec. III, we cast the kinetic equation in the form of a moment
system for nine moments. The choice of the convenient mo-
ment representation proves important in the course of finding
the solution. In Sec. IV, after describing the setup in which
the fluid is confined between parallel moving plates, and is
subject to the external force directed collinearly with the
plates, we outline the strategy of finding the solution to the
kinetic equation in the steady-state case. This strategy was
already introduced in �12�. In the remainder of Sec. IV, we
implement the solution strategy for the D2Q9 model: In Sec.
IV B, we find the inner solution to the stationary moment
system of Sec. III, assuming unidirectional flow and no mass
flux through the walls. The solution is a parametric family
depending on a set of constants of integration, which are
later evaluated by applying specified boundary conditions. In
Sec. IV C, we invert the map from the populations into the
moments, and represent the populations as the functions of
moments. This auxiliary step is required in order to impose
the boundary conditions at the walls. In Sec. IV D, we apply
the classical diffusive wall boundary conditions at the mov-
ing plates, and use the results of Secs. III and IV C in order
to evaluate the integration constants of the moment solution.
This is done in two steps: In Sec. IV D, a part of the inte-
gration constants is evaluated that enables us to write the
solution in an explicit form for the velocity of the flow and
for the off-diagonal �shear� stress, as a function of the Knud-
sen number. Evaluation of the remaining integration con-
stants and finding the solution for rest of the higher-order
moments is postponed until Sec. VI A. The explicit solutions
of Sec. IV D are analyzed in Secs. V and V C, and compared
with the slip flow solution by Cercignani from the linearized
Boltzmann-BGK equation for the two limiting cases, Couette
and Poiseuille flows. It is demonstrated in Sec. V that the
solution for the nine-velocity model agrees quantitatively
with the Boltzmann-BGK case. Another important access to
the quality of a slip flow model is the behavior of the flow
rate in the Poiseuille flow as a function of Knudsen number
�so-called Knudsen minimum problem�. In Sec. V C, the
flow rate is compared to the result of Cercignani, and a good
quantitative agreement is demonstrated. In Sec. VI A, we
complete the solution by finding explicitly the higher-order
moments. It is demonstrated that the normal stress difference
shows a layer at the walls, and is in qualitative agreement
with more microscopic simulations. In this section, we also
investigate the question of the sensitivity of the results to the
form of the forcing term in the discrete-velocity setting. So-
lution for a different choice of the forcing demonstrates that,
while no changes occur in the basic fields �in particular in the
velocity profile�, the behavior of the higher-order nonhydro-
dynamic fields can be different. However, it is demonstrated
that for slow flows �small Mach number� even this difference
vanishes. Finally, a discussion is given in Sec. VII.

II. THE D2Q9 MODEL

The discrete velocity set for the D2Q9 model �see Fig. 3�
is given by

cx =�3kBT0

m
	0,1,0,− 1,0,1,− 1,− 1,1
 ,

cy =�3kBT0

m
	0,0,1,0,− 1,1,1,− 1,− 1
 , �6�

where T0 is the reference temperature, kB is the Boltzmann
constant, and m is the molecular mass. Hereafter, cix and ciy
�the ith component of cx and cy� will represent the ith com-
ponent of discrete velocity vector ci��cix ,ciy�. The distribu-
tion function f �populations of the velocities ci, i=0, . . . ,8�
will be represented by a vector,

f = 	f0, f1, f2, f3, f4, f5, f6, f7, f8
 . �7�

The entropy function of the D2Q9 model reads �14�

H = �
i=0

8

f i ln� f i

wi
� , �8�

where the vector of weights wi is

w =
1

36
	16,4,4,4,4,1,1,1,1
 . �9�

The local equilibrium distribution function, feq, is found
upon minimizing H �8�, subject to fixed density � and mo-
mentum j�, �=x ,y,

��f� = �
i=0

8

f i,

j��f� = �
i=0

8

ci�f i. �10�

The result of this minimization problem reads �9�
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FIG. 3. Channel geometry. Discrete velocities of the D2Q9
model at the bottom and the top plates are indicated to explain
boundary conditions.
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f i
eq = �wi

�=1

D ��2c − �3u�
2 + c2

c
��2u� + �3u�

2 + c2

c − u�

�ci�/c� .

�11�

Here c=�3cs, where cs is the speed of sound,

cs =�kBT0

m
, �12�

with T0 the reference temperature and m the mass of a par-
ticle. The fluid velocity u� is defined as

u� =
j�

�
, �13�

and D=2 in the present case. Expanding Eq. �11� into powers
of velocity to second order, we obtain the series expansion of
the equilibrium �15� which will be used throughout the pa-
per,

f i
eq = wi�� +

j�ci�

cs
2 +

j�j�

2�cs
4 �ci�ci� − cs

2����� . �14�

Using the BGK collision model and applying a force term,
the kinetic equation for the populations f i can be written as

�t f i + ci���f i − Fi = −
1

�
�f i − f i

eq� , �15�

where g�	gx ,gy
 is the acceleration vector and � is the re-
laxation time, which relates to the kinematic viscosity �
through

� = �cs
2. �16�

A remark on the choice of the forcing term in the kinetic
equation �15� is in order. In the discrete-velocity case, we do
not have derivatives in the velocities, thus the familiar forc-
ing term of the classical kinetic theory, viz., g���f /�c��, is
not applicable. In general, any forcing term is a valid ap-
proximation as long as its lower-order moments coincide
with the moments of g���f /�c�� with at least second-order
accuracy. For example, the forcing term �16�

Fi
�1� = g�

�ci� − u��
cs

2 f i
eq �17�

is often used in the simulation due to its compact form. An
alternate form of the force is also used in the literature �17�

Fi
�2� = wi��g�ci�

cs
2 +

g�j� + g�j�

2�cs
4 �ci�ci� − cs

2����� . �18�

One of the objectives of this paper is to analyze the effect of
the choice of the forcing.

III. MOMENT REPRESENTATION

In a sequel, we shall also need a different but equivalent
representation of the kinetic equation �15� in terms of nine
linearly independent linear combinations of the populations
�moments�. The three locally conserved moments �density

and two components of the momentum density� have already
been introduced above �see Eq. �10��. The remaining six in-
dependent moments are most conveniently chosen as fol-
lows:

Three independent components of the pressure tensor,

P���f� = �
i=0

8

f ici�ci�,

which we choose as the diagonal elements, Pxx and Pyy, and
the off-diagonal �shear� component, Pxy; two independent
components, Qxyy and Qyxx, of the third-order moment tensor,

Q����f� = �
i=0

8

f ic�ici�ci�,

and a fourth-order moment, Rxxyy, where

R���	�f� = �
i=0

8

f ici�ci�ci�ci	.

Note that a different choice of the moments was used in Ref.
�12�. By the equivalence of bases theorem, any other choice
of the basis in the nine-dimensional state space of the present
model is possible and was used in previous works �18�. For
our present purpose, the above choice of the moment system
proves to be most convenient. The set of nine moments just
introduced is represented by a nine-dimensional vector
M�f�,

M = 	�, jx, jy,Pxx,Pxy,Pyy,Qyxx,Qxyy,Rxxyy
 , �19�

which is compactly represented by a relation �from popula-
tions to moments�

M = 
 · f , �20�

where 
 is a 9�9 matrix,


 = 	1,cx,cy,cxcx,cxcy,cycy,cxcxcy,cxcycy,cxcxcycy
 ,

�21�

with 1= 	1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1
. Any other moment can be
expressed as a linear combinations of the set M. It is easy to
check using Eq. �14� that at the equilibrium, Meq

=M(feq�� , j�), where

Meq = ��, jx, jy,
jx
2

�
+ �cs

2,
jxjy

�
,
jy
2

�
+ �cs

2, jycs
2, jxcs

2,
j2

�
cs

2 + �cs
4� .

�22�

Elsewhere below, the nonequilibrium value of any moment,
M−Meq, will be denoted as Mneq. Furthermore, the mo-
ments of any valid forcing vector F are of the form

M�F�

= 	0,�gx,�gy,�1�F�,�2�F�,�3�F�,�4�F�,�5�F�,�6�F�
 .

�23�

For the two types of forcing considered here, Eqs. �17� and
�18�, the moments are provided in Appendix D.

YUDISTIAWAN, ANSUMALI, AND KARLIN PHYSICAL REVIEW E 78, 016705 �2008�

016705-4



Applying Eq. �20� to Eq. �15�, we obtain the time evolu-
tion equations for the moments. Specifically, for the locally
conserved fields, we have

�t� + �xjx + �yjy = 0,

�t jx + �xPxx + �yPxy − �gx = 0,

�t jy + �xPxy + �yPyy − �gy = 0. �24�

For the components of the pressure tensor, we have

�tPxx + 3cs
2�xjx + �yQyxx − �1 = −

1

�
�Pxx −

jx
2

�
− �cs

2� ,

�tPxy + �xQyxx + �yQxyy − �2 = −
1

�
�Pxy −

jxjy

�
� ,

�tPyy + �xQxyy + 3cs
2�yjy − �3 = −

1

�
�Pyy −

jy
2

�
− �cs

2� .

�25�

Finally, for the rest of the higher-order moments, we have

�tQyxx + 3cs
2�xPxy + �yRxxyy − �4

= −
1

�
�Qyxx − jycs

2� ,

�tQxyy + �xRxxyy + 3cs
2�yPxy − �5 = −

1

�
�Qxyy − jxcs

2� ,

�tRxxyy + 3cs
2�xQxyy + 3cs

2�yQyxx − �6

= −
1

�
�Rxxyy −

j2

�
cs

2 − �cs
4� . �26�

The moment system �24�–�26� for nine moments is equiva-
lent to the kinetic equation. In the course of finding the so-
lution to a generalized unidirectional flow �see next section�,
both the moment and the population representations will be
used.

IV. UNIDIRECTIONAL FLOW: STATIONARY SOLUTION

A. Setup description and outline of solution

We consider the fluid to be enclosed by two parallel plates
in the x direction and separated by a distance of L �see Fig.
3�. The bottom plate at y=−L /2 moves with the velocity U1
and the top plate at y=L /2 moves with the velocity U2.
Unidirectional forcing in the x direction is also added
�g= 	g ,0
�. We aim at finding the steady-state solution to the
kinetic equation of Sec. II �or, equivalently, of the moment
system of Sec. III� in this setup.

Let us outline the solution strategy, which consists of
three steps:

Step 1. Integration of the steady-state moment system.
This is done under two assumptions: �i� The flow is unidi-
rectional. All the fields depend only on the y coordinate. �ii�

No mass flow through the walls. As a result, we find the
inner solution for all the moments. This inner solution is a
parametric family that depends on four yet undetermined
constants of integration.

Step 2. Inner solution for the populations. In this step, we
invert the map from the population space to the moments
space, and use a representation of the populations in terms of
moments. This representation is similar to Grad’s distribution
function, albeit in the present context it is exact representa-
tion. Using the result of step 1, we find the inner solution for
the populations. The latter depends on the same integration
constants as introduced above. This step is required in order
to apply the boundary conditions at the next step.

Step 3. Matching the boundary condition for the popula-
tions with the inner solution. Accordingly, we apply the dif-
fusively reflecting wall boundary condition at the top and
bottom plates and match it with the inner solution for the
populations. Thereby, the integration constants will be unam-
biguously determined, and the solution for the moments can
be found. The complete solution for the Couette and Poi-
seuille flow setup will be explicitly given. Note that in this
part, solving for jx is prioritized and some related moments
are solved as well. A separate section is dedicated to discuss-
ing the remaining moments.

B. Step 1. Inner solution to the stationary moment system

Assuming that the flow is in the steady state and is unidi-
rectional �all the fields depend only of the y coordinate due
to the nature of the setup, which is infinite in the x direction�,
the stationary moment system reads �with some rearrange-
ment of the order of the equations that will prove useful
below�

�yjy = 0, �27�

�yPyy = 0,

3cs
2�yjy − �3 = −

1

�
�Pyy −

jy
2

�
− �cs

2� , �28�

�yPxy − �g = 0,

�yQxyy − �2 = −
1

�
�Pxy −

jxjy

�
� ,

3cs
2�yPxy − �5 = −

1

�
�Qxyy − jxcs

2� , �29�

�yQyxx − �1 = −
1

�
�Pxx −

jx
2

�
− �cs

2� ,

�yRxxyy − �4 = −
1

�
�Qyxx − jycs

2� ,
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3cs
2�yQyxx − �6 = −

1

�
�Rxxyy −

jx
2 + jy

2

�
cs

2 − �cs
4� . �30�

From Eq. �27� and the no-flux condition at the walls, jy�wall
=0, we obtain that the transverse momentum flux is vanish-
ing,

jy = 0. �31�

Substituting jy =0 into the rest of the moment equations, we
arrive at three decoupled sets of equations. Using Eqs. �D1�
and �D2�, we see that for both types of forcing, we have

�2 = �3 = �4 = 0, �5 = �cs
2g . �32�

Let us now integrate the resulting moment system. From
the first set �28�, we find

Pyy = �cs
2,

� = const, �33�

that is, the density is a constant. From the second set �29�, we
find

Pxy�y� = �gy + k1,

Qxyy�y� = cs
2�jx�y� − 2�g�� ,

jx�y� = −
�g

2�cs
2 y2 −

k1

�cs
2 y + � k2

cs
2 + 2�g�� , �34�

where k1 and k2 are yet undetermined constants of integra-
tion. This result shows that the macroscopic velocity profile
is insensitive to the choice of the particular form of the forc-
ing.

Finally, the third set �30� can be simplified in terms of two
auxiliary functions,

X1 = Rxxyy
neq + �3csQyxx

neq,

X2 = Rxxyy
neq − �3csQyxx

neq. �35�

The nonequilibrium part of the normal stress can be written
as follows:

Nneq =
X1 + X2

6cs
2 −

�

3cs
2 ��6 − 3cs

2�1� , �36�

while X1 and X2 satisfy

�y�X1 exp� y

��3cs
�� = exp� y

��3cs
�� �6

�3cs

− �yRxxyy
eq � ,

�y�X2 exp�−
y

��3cs
�� = − exp�−

y

��3cs
�� �6

�3cs

+ �yRxxyy
eq � ,

�37�

which, upon integration, gives

X1�y� = X1�y1�exp� �y1 − y�
��3cs

� + �
s=y1

s=y

ds exp� s − y

��3cs
�

���6�jx�s��
�3cs

+
2

�
ux�s�Pxy�s�� ,

X2�y� = X2�y2�exp�− �y2 − y�
��3cs

� − �
s=y2

s=y

ds exp� �y − s�
��3cs

�
���6�jx�s��

�3cs

−
2

�
ux�s�Pxy�s�� . �38�

Here y1 and y2 are two fixed points, at which the values of X1
and X2 have to be provided, and we have used the fact that
Eqs. �29� can be rewritten as

�yjx = −
Pxy

�cs
2 . �39�

Using integration by parts, Eq. �38� can be simplified as

X1�y� = exp� y1 − y

��3cs
�	X1�y1� − 1�y1�
 + 1�y� ,

X2�y� = exp�−
y2 − y

��3cs
�	X2�y2� − 2�y2�
 + 2�y� , �40�

where

1 =
6

�
Pxy

2 + �2ux − 18�g���3csPxy − 3�cs
2�g� + ��6

− �3�2cs�y�6 + 3�3cs
2�y

2�6 − 3�3�4cs
3�y

3�6 + 9�5cs
4�y

4�6

− 9�3�6cs
5�y

5�6 + 27�7cs
6�y

6�6,

2 =
6

�
Pxy

2 − �2ux − 18�g���3csPxy + 3�cs
2�g� + ��6

+ �3�2cs�y�6 + 3�3cs
2�y

2�6 + 3�3�4cs
3�y

3�6 + 9�5cs
4�y

4�6

+ 9�3�6cs
5�y

5�6 + 27�7cs
6�y

6�6, �41�

and we have used the fact that for both the forcing schemes
under consideration, �6 is at most a sixth-order polynomial
in y �that is, expressions for 1 and 2 are still exact�.

In summary, Eqs. �31�, �33�, �34�, �40�, and �36� provide
the general inner solution for the stationary moment system,
and it depends on four parameters: two integration constants,
k1 ,k2, and two values of X1 and X2 at some specified points,
y1 and y2, respectively. To determine these, we need to
specify boundary conditions at the walls. Note that this is
precisely where the LB hierarchy differs from the method of
moments. It is well known that for moment methods, such as
Grad’s systems, it is not possible to provide self-consistent
boundary conditions for the moments. In our case, this is
possible because the boundary conditions for the LB kinetic
equations are formulated in terms of populations rather than
in terms of moments. For that, we need to invert the linear
relation between the moments and the populations, which is
done in the next section.
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C. Step 2. Population representation of the inner solution

In this auxiliary section, we consider the following basis
of the nine-dimensional space:

e = 	1,cx,cy,�cxcx − cs
21�,cxcy,�cycy − cs

21�,�cxcxcy

− cs
2cy�,�cxcycy − cs

2cx�,�cxcx − cs
21��cycy − cs

21�
 .

�42�

The basis �42� is orthogonal with respect to the scalar prod-
uct �x ,y�=�i=0

8 wixiyi. We represent the population vector f in
the basis �42�,

f = �
k=0

8

wkek�k, �43�

where expansion coefficients �k are found by taking the in-
ner product of f with the basis elements ek. Thus, the popu-
lations can be written in a Grad-like form �from-moments-
to-populations representation�,

f i = wi�� +
j�ci�

cs
2 +

Gi
�2�

2cs
4 +

Gi
�3�

6cs
6 +

Gi
�4�

4cs
8 � , �44�

where

Gi
�2� = �P�� − �cs

2�����ci�ci� − cs
2���� ,

Gi
�3� = �Q��� − j�cs

2��� − j�cs
2��� − j�cs

2����

��ci�ci�ci� − cs
2�ci���� + ci���� + ci������ ,

Gi
�4� = �Rxxyy − Pcs

2 + �cs
4��cix

2 − cs
2��ciy

2 − cs
2� . �45�

Note that P= P��= Pxx+ Pyy. The explicit form of the indi-
vidual populations f i can be found in Appendix A.

Upon substituting the solution for the moments obtained
in Sec. IV B into Eqs. �44� and �45�, we obtain the inner
solution in terms of populations. Note that populations ob-
tained in this way depend on the same four integration con-
stants previously introduced. Thus, the result of this section
enables us to impose the boundary conditions, which is done
in the next section.

D. Step 3. From boundary condition to explicit solution

1. Diffusive wall boundary condition

Boundary conditions for discrete velocity models are for-
mulated in terms of populations �distribution function�. Thus,
in order to apply the boundary conditions, it is convenient to
come back from the moment representation to the represen-
tation in terms of the distribution using Eq. �44�. For the
present system, we apply the classical Maxwell’s diffusive
wall boundary condition. In this condition, particles that
reach the wall are redistributed in a way consistent with the
mass-balance and normal-flux conditions,

�f i�ci·n�0 =
�ci·n�0

��ci · n��f i

�ci·n�0
��ci · n��f i

eq��,Uwall�
f i

eq��,Uwall� ,

�46�

where n is the inner normal at the wall, and Uwall is the wall
velocity. Equation �46� means that the redistribution of the
particles that reach the wall will be according to the equilib-
rium distribution of the population that leaves the wall. Note
that the dependence on the density entering the wall equilib-
rium distribution f i

eq�� ,Uwall� is immaterial in Eq. �46�; it
cancels out both in the numerator and the denominator be-
cause the density dependence factors out. In order to avoid
confusion, we shall rewrite Eq. �46� using a nominal value
�=1,

�f i�ci·n�0 =
�ci·n�0

��ci · n��f i

�ci·n�0
��ci · n��f i

eq�1,Uwall�
f i

eq�1,Uwall� .

�47�

Let us proceed with evaluating the left-hand side of Eq. �47�
for the present case. First, using the formula for the equilib-
rium �14�, and taking into account that Uwall= 	Uwall ,0
,
where Uwall=U1 for the lower plate and Uwall=U2 the upper
plate, we obtain the equilibrium of the populations leaving
the walls,

f i
eq�1,Uwall� = wi�1 +

cixUwall

cs
2 +

�cixUwall�2

2cs
4 −

Uwall
2

2cs
2 � .

�48�

Second, noticing that ��ci ·n� � =c=�3cs for all i satisfying
ci ·n�0, the denominator in Eq. �47� is evaluated using the
equilibrium �48� and the auxiliary identities collected in Ap-
pendix B, Eq. �B1�,

�
ci·n�0

��ci · n��f i
eq�1,Uwall� =

c

6
. �49�

Equation �49� is valid for both the top and the bottom plates
since the identities in Eq. �B1� are the same for either case of
ciy �0 or ciy �0. Third and final, using identities given in
Appendix C, we evaluate the nominator in Eq. �47� �the total
flux of impinging populations�,

�
ci·n�0

��ci · n��f i = c �
ci·n�0

wi�� +
j�ci�

cs
2 +

Gi
�2�

2cs
4 +

Gi
�3�

6cs
6 +

Gi
�4�

4cs
8 �

=
c�

6
. �50�

Here � is the density of the fluid found above �that is, �
=const�.

Combining together the results �48�–�50�, we find the dif-
fusive wall boundary conditions in the present setup,

�f i�ci·n�0 = �f i
eq�1,Uwall� = f i

eq��,Uwall� . �51�

Thus, in the present steady-state flow, the boundary condition
amounts to setting the outgoing populations at the wall equi-
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librium. For the purpose of what will follow, we shall write
Eq. �51� for each individual population explicitly: At y
=−L /2 �bottom wall�,

�f2�y=−L/2 =
4

36
��1 −

1

2cs
2U1

2� ,

�f5�y=−L/2 =
1

36
��1 +

�3

cs
U1 +

1

cs
2U1

2� ,

�f6�y=−L/2 =
1

36
��1 −

�3

cs
U1 +

1

cs
2U1

2� , �52�

and at y=L /2 �top wall�,

�f4�y=L/2 =
4

36
��1 −

1

2cs
2U2

2� ,

�f7�y=L/2 =
1

36
��1 −

�3

cs
U2 +

1

cs
2U2

2� ,

�f8�y=L/2 =
1

36
��1 +

�3

cs
U2 +

1

cs
2U2

2� . �53�

In the next section, we match the inner solution for the popu-
lations with the boundary condition.

2. Evaluation of k1 and k2

In the first step of the matching procedure, we evaluate
the two integration constants k1 and k2. This will be suffi-
cient for finding the closed-form velocity profile and the
shear stress, and thus to quantify the slip model. Functions
Qxyy�y ;k1 ,k2� and Pxy�y ;k1 ,k2� are given by the inner solu-
tion, Eq. �34�. Substituting these into boundary condition Eq.
�A4�, we arrive at two linear algebraic equations for the two
unknowns, k1 and k2. After some algebra, we find

k1 = −
��

�2Kn + 1�
�U2 − U1�

L
,

k2 = �cs
2 �U1 + U2�

2
+

�cs
2g

2�
�4Kn + 1��L

2
�2

. �54�

Here we have introduced the Knudsen number,

Kn =
�3�cs

L
. �55�

Note that mean free path lm.f.p. is defined as

lm.f.p. = �3�cs, �56�

so that Kn= lm.f.p. /L.
With Eq. �54�, Eq. �34� give us closed-form expressions

for the velocity profile, shear stress, and the xyy component
of the third-order moments tensor. This information is suffi-
cient in order to compare the present D2Q9 model with other
known results of kinetic theory. Therefore, we shall do this in

the next section, and will complete the solution for the rest of
the higher-order moments �which requires evaluation of the
two remaining integration constants� in Sec. IV A.

V. SLIP MODEL

A. Velocity profile

Using Eq. �54� in Eq. �34�, and with some rearrangement
of the terms, we find the solution for the x component of the
velocity ux= jx /�,

ux =
gL2

2�
�− � y

L
−

1

2
�� y

L
+

1

2
� + Kn +

4

3
Kn2� +

�U2 − U1�
�2Kn + 1�

y

L

+
�U1 + U2�

2
, �57�

while for the off-diagonal component of the pressure tensor,
we have

Pxy = �gy −
��

�2Kn + 1�
�U2 − U1�

L
. �58�

It is instructive to consider the two limiting cases of the
general expressions �57� and �58�. For a purely shear driven
flow �Couette flow�, we set g=0. Then formulas �57� and
�58� recover the solution already derived in our previous Let-
ter �12�. On the other hand, in the case of Poiseuille flow, we
set U1=U2=U to obtain in Eq. �57� the familiar parabolic
velocity profile with an additional slip correction terms of the
order Kn and Kn2. The latter indicates that the D2Q9 model
amounts to the second-order slip velocity model to be dis-
cussed in the next section.

B. Second-order slip velocity

In order to characterize the D2Q9 as a slip velocity
model, let us introduce the slip velocity at the walls,

�uslip�y=�L/2 = �ux�y=�L/2 − �Uwall�y=�L/2. �59�

From Eq. �57�, we have

�uslip�y=�L/2 =
gL2

2�
�Kn +

4

3
Kn2� �

�U2 − U1�Kn

2Kn + 1
. �60�

The slip velocity model is usually characterized by a relation
between the slip velocity and the second and the first deriva-
tives of the velocity in the direction normal to the wall. In
order to present our results in this form, let us define the
reduced y coordinate ŷ= y

L . Let us also define n̂ as the normal
of the wall, such that

�n̂�y=�L/2 = � ŷ . �61�

With this, we can write the slip velocity as follows:

�uslip�wall = Kn� �ux

� n̂
�

wall

−
2

3
Kn2� �2ux

� n̂2 �
wall

. �62�

Note that the results are the same for the top and the bottom
walls. The quality of the slip velocity model �62� can be
accessed through a comparison with a slip velocity solution
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of the Boltzmann-BGK kinetic equation by Cercignani �13�.
The result of Cercignani can be written using the notation
adopted here as

�uslip�wall = 0.8297Kn� �ux

� n̂
�

wall

− 0.5108Kn2� �2ux

� n̂2 �
wall

.

�63�

It is clear that the result of the D2Q9 model �62� is reason-
ably close to the full Boltzmann-BGK result �63�. In order to
make the comparison even more transparent, let us consider
the special case of the Poiseuille flow �for simplicity, we set
U1=U2=0�. In this case, our solution yields the following
slip:

�uslip�wall =
gL2

2�
�Kn +

4

3
Kn2� , �64�

whereas the result of Cercignani reads

�uslip�wall =
gL2

2�
�0.8297Kn + 1.0216Kn2� . �65�

The reduced form of the two results for the slip is compared
in Fig. 1.

C. Flow rate

Another important characteristics of the slip models is the
ability to predicting a nonmonotonic dependence of the mass
flow rate in the Poiseuille flow on the Knudsen number �so-
called Knudsen minimum problem�. The flow rate Q is de-
fined as

Q = �
y=−L/2

y=L/2

uxdy . �66�

Assuming Poiseuille flow condition U1=U2=0 in the general
solution �57�, and taking into account the relation between
the Knudsen number and shear viscosity,

� = Kn
csL
�3

, �67�

we find the flow rate for the current model as follows:

Q =
�3gL2

2cs
� 1

6Kn
+ 1 +

4

3
Kn� . �68�

In the continuum limit �Kn→0�, the solution asymptotically
approaches the Navier-Stokes solution,

QNS =
�3gL2

12cs

1

Kn
. �69�

The flow rate �68� has the minimum located at Knmin, where

1

Knmin
= 2�2 � 2.828 43. �70�

In the case of Cercignani’s slip model, we have

Q =
�3gL2

2cs
� 1

6Kn
+ 0.8297 + 1.0216Kn� , �71�

and the minimum is located at Knmin, where

1

Knmin
� 2.47580. �72�

From Fig. 2, it is clear that both the D2Q9 model and the
slip-flow approximation based on the Boltzmann-BGK ki-
netic equation give a reasonably close result for the flow rate.

VI. HIGHER-ORDER MOMENTS

A. Shear stress

The shear stress in the present model is purely Newtonian
and satisfies a relation

Pxy = − ��
�ux

�y
, �73�

which can be checked by using Eqs. �57� and �58�. However,
what is nontrivial is the velocity gradient itself. The Navier-
Stokes equation with no-slip boundary condition predicts
that the velocity gradient is independent of the Knudsen
number. However, we know from the numerical solutions of
the linearized Bolztmann equation and DSMC simulations
that this is not the case. The present model is able to predict
this behavior qualitatively. This agreement is qualitative only
due to the absence of kinetic boundary layer �Knudsen layer�
in the D2Q9 model �12�. A comparison is possible by intro-
ducing a nondimensional velocity gradient Y at the centerline
as

Y = 1 − ��U2 − U1�
�ux

��y/L�
�

y=0
, �74�

which can be evaluated for the present model using Eq. �57�,

Y =
2Kn

�2Kn + 1�
. �75�

In Table I, the D2Q9 model is compared against data for the
linearized Boltzmann-BGK equation �19�. It can be seen
from Table I that in the slip-flow regime, the error with re-
spect to the full �not just the slip flow solution� Boltzmann-
BGK equation is around 20%, while for the transitional flow
it is around 30%. Note that the deviation at higher Knudsen
numbers is due to the absence of the Knudsen layer for the
velocity in both the D2Q9 model and in the slip flow solution
by Cercignani.

B. Third- and fourth-order moments

From Eq. �34�, we have already seen that one of the off-
diagonal third-order moments, Qxyy, is a function of the lon-
gitudinal velocity. That is, the longitudinal energy flux Qxyy

neq

reads

Qxyy
neq = − 2cs

2�g� . �76�

On the other hand, for the transversal energy flux, we have
while using Eq. �30�
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Qyxx
neq = − ��yRxxyy . �77�

Furthermore, using Eq. �36�,

Rxxyy
neq = 3cs

2Nneq + ���6 − 3cs
2�1� , �78�

which means that the transversal energy flux is completely
determined from the knowledge of the nonequilibrium part
of the normal stress difference. Notice that this relationship
is equivalent to an algebraic relations offered by Eqs. �35�
and �36�. In the next section, we shall find the explicit ex-
pression for the normal stress difference.

C. Normal stress difference

Above, we have evaluated the integration constants k1 and
k2, which was sufficient to find the velocity and the shear
stress in the general unidirectional setup. The remaining two
integration constants, k3 and k4, are required in order to find
the remaining higher-order moments of the solution. This is
the subject of the present section.

Combining Eq. �40� with Eq. �A4�, we have

X1�y� = exp�−

1

2
+

y

L

Kn
�	− �cs

2�ux
2 − U1

2�y=−L/2 − 1�y = − L/2�


+ 1�y� ,

X2�y� = exp�−

1

2
−

y

L

Kn
�	− �cs

2�ux
2 − U2

2�y=L/2 − 2�y = L/2�


+ 2�y� . �79�

This general expression can be simplified for special flow
situations. In particular, for the Couette flow, we set g=0 to
get

1�y� = 2�cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 � + 2�3csux�y�Pxy ,

2�y� = 2�cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 � − 2�3csux�y�Pxy . �80�

Using Eq. �58� and Eq. �57� in the latter expression, it can be
shown that

1�− L/2� = �cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 � − �cs
2�ux

2 − U1
2�y=−L/2,

2�L/2� = �cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 � − �cs
2�ux

2 − U2
2�y=L/2.

�81�

Thus,

X1�y� = �cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 ��2 − exp�−

1

2
+

y

L

Kn
��

+ 2�3csPxyux�y� ,

X2�y� = �cs
2�Kn2�U2 − U1�2

�2Kn + 1�2 ��2 − exp�−

1

2
−

y

L

Kn
��

− 2�3csPxyux�y� , �82�

which is equivalent to the following nonequilibrium normal
stress difference:

Nneq = ��U2 − U1

L
�2 �2

cs
2�1 + 2Kn�2

��2 − e−1/2Kn cosh� y

Kn L
�� . �83�

The result �83� was already reported in �12�, and we do not
dwell on it here. As was explained above, all the remaining
higher-order moments are expressed using the nonequilib-
rium normal stress �83�. In particular, the nonequilibrium
transversal energy flux qy

neq=Qyxx
neq reads

qy
neq = Qyxx

neq = ��U2 − U1

L
�2 �3�2

cs�1 + 2Kn�2

��e−1/2Kn sinh� y

Kn L
� − 2y� + Pxy�U1 + U2� .

�84�

For the pressure-driven flow �Poiseuille flow�, the normal
stress difference is evaluated in the same way. In this case,
combining Eq. �40� with Eq. �A4�, we have

X1�y� = exp�−

1

2
+

y

L

Kn
��− �g2L2�3

4
+ 2Kn +

4

3
Kn2�

− 1�y = − L/2�� + 1�y� ,

TABLE I. Deviation of nondimensional velocity gradient from
Navier-Stokes value for the D2Q9 model �75� and the Boltzmann-
BGK kinetic equation �19�.

Kn D2Q9 Boltzmann-BGK

% Error from
Boltzmann-BGK

value

0.06124 0.10911 0.09134 19.45

0.12247 0.19675 0.1648 19.89

0.17496 0.25922 0.2136 21.36

0.24495 0.32881 0.2664 23.43

0.30619 0.37979 0.3041 24.89

0.61327 0.55051 0.4290 28.32

0.81649 0.62020 0.4821 28.64

1.22474 0.71010 0.5556 27.81
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X2�y� = exp�−

1

2
−

y

L

Kn
��− �g2L2�3

4
+ 2Kn +

4

3
Kn2�

− 2�y = L/2�� + 2�y� . �85�

Let us now discuss the effect of the choice of the forcing
term. For the first type of the forcing, Eqs. �17� and �D1�, we
have the following relationship:

1�y� + 2�y�

=
3�g4

4cs
4Kn2L2 y6 +

3�g4

16cs
4Kn2 �− 3 − 12Kn + 104Kn2�y4

+
�g2L2

3
�− 3 − 12Kn + 80Kn2�

+ �16�g2 +
�g4L2

64cs
4Kn2 �9 + 72Kn

− 192Kn2 − 1344Kn3 + 15232Kn4��y2 +
�g4L4

2304cs
4Kn2

��− 27 − 324Kn − 1080Kn2 − 20340Kn4

− 105984Kn5 + 1092608Kn6� , �86�

1�y� − 2�y�

=
9�g4

2cs
4KnL

y5 + �6�g2

KnL
+

3�g4L

4cs
4Kn

�− 3 − 12Kn

+ 104Kn2��y3 + �3�g2L

2Kn
�− 1 − 4Kn + 16Kn2�

+
�g4L3

32cs
4Kn

�9 + 72Kn − 192Kn2 − 1344Kn3

+ 15232Kn4��y . �87�

Therefore,

1�− L/2� = 2�L/2�

= �g2L2Kn�4 +
40

3
Kn�

+
�g4 L4

36cs
4 Kn�27 + 513Kn + 3456Kn2

+ 8536Kn3� . �88�

For the second type of forcing �Eqs. �18� and �D2��, we have

1�y� = 6�g2y2 + �3cs�gL�2ux�y� − 18�g�� y

L
− Kn�

+ �g2L2�− � y

L
−

1

2
�� y

L
+

1

2
�

+ Kn −
2

3
Kn2 + 2Kn

y

L
� ,

2�y� = 6�g2y2 − �3cs�gL�2ux�y� − 18�g�� y

L
+ Kn�

+ �g2L2�− � y

L
−

1

2
�� y

L
+

1

2
�

+ Kn −
2

3
Kn2 − 2Kn

y

L
� . �89�

Therefore,

1�− L/2� = 2�L/2� = �g2L2Kn�4 +
40

3
Kn� . �90�

As we have already mentioned, both suggestions for the
forcing term result in the same expression for the velocity
profile, shear stress, and the longitudinal energy flux. The
difference occurs only in the higher-order moments such as
the normal stress difference. In order to compare the two
cases, we introduce the Mach number Ma as the ratio of the
average velocity to the speed of sound,

Ma =
ux

avg

cs
, �91�

where

ux
avg =

1

L
�

y=−L/2

y=L/2

uxdy =
gL2

2�
�1

6
+ Kn +

4

3
Kn2� . �92�

Thus,

Ma =
gL2

2�cs
�1

6
+ Kn +

4

3
Kn2� . �93�

In Figs. 4 and 5, the normal stress difference at the center-
line, that is, the maximum of the normal stress difference, is
shown as a function of the Knudsen number for two different
values of Mach number. From Figs. 4 and 5, we see that both
forcing schemes agree with each other at least up to Kn
�0.5 for low Mach number, as expected. Finally, it should

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3x 10
−5

Kn

N
ne

q | y=
0

Forcing 1
Forcing 2

FIG. 4. Comparison of the centerline nonequilibrium normal
stress difference �Nneq�y=0� versus Knudsen number at Ma=0.01 for
various force terms. Forcing 1: Eq. �17�; forcing 2: Eq. �18�.
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be noted that the two forces considered above may show
difference in the fully discrete �space and time� LB setting
�17�. This, however, goes beyond the focus of our paper.

VII. DISCUSSION

In this paper, we quantified the standard and very popular
lattice Boltzmann model with nine discrete velocities �the
D2Q9 model� for the simulation beyond the Navier-Stokes
hydrodynamics. The exact solution to the generic unidirec-
tional flow between moving parallel plates extends our result
presented in the recent Letter �12�. In particular, we have
studied the flow under action of external force. As was al-
ready found in �12�, the limitation of the D2Q9 model is that
it does not describe the Knudsen layer for the velocity pro-
file, and thus the model itself qualifies as a slip-flow approxi-
mation. In order to access its quality, we made a comparison
with the well-known slip-flow approximation of the
Boltzmann-BGK kinetic equation in the Poiseuille flow. The
comparison shows that the slip-flow D2Q9 is reasonably
close to the slip-flow solution of the Boltzmann-BGK equa-
tion. Thus, due to its high computational efficiency, the
D2Q9 model can be used for semiquantitative analysis in
engineering applications.

It should be remarked that the excellent result is due, not
only to the use of the BGK, but also to the choice of the
boundary condition. The diffusive wall boundary condition is
used, which has been published earlier by two of the present
authors �2�, and which is only one among many possible
choices in the field. It does, however, make sense to use the
diffusive boundary condition in this context, because it is
derived from the kinetic theory of gases, unlike other com-
monly used approaches �see, for example, a recent review
�20��.

It should be pointed out that our analytic results are per-
tinent to the discrete-velocity model �15�, where time and
position variables are continuous. Various discretization pro-
cedures for Eq. �15� have already been suggested in the lit-
erature; see, for example, �7,21�. Our study thus provides a

useful benchmark for various discretization schemes of the
kinetic equation �15�, and especially for the implementation
of the boundary conditions. It has been demonstrated already
that, under an appropriate discretization, the numerical solu-
tion to the Couette flow converges to the analytical result
�12�.

We have also analyzed the effect of various force imple-
mentations on the higher-order moments and have found that
the most popular models of the force agree with each other in
a range of Knudsen number for low Mach number flows.
Finally, we remind the reader that the D2Q9 model consid-
ered in this paper is the lowest-order model in the lattice
Boltzmann hierarchy �10� of models. In our followup papers,
we shall consider in detail the exact solutions to higher-order
isotropic lattice Boltzmann models already announced in
�12,22�.
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APPENDIX A: POPULATIONS REPRESENTATION IN
TERMS OF MOMENTS

From Eq. �44�, we can explicitly represent populations f i
in terms of moments,

f0 = � −
Pxx

3cs
2 −

Pyy

3cs
2 +

Rxxyy

9cs
4 ,

f1 =
jx

2�3cs

+
Pxx

6cs
2 −

Qxyy

6�3cs
3

−
Rxxyy

18cs
4 ,

f2 =
jy

2�3cs

+
Pyy

6cs
2 −

Qyxx

6�3cs
3

−
Rxxyy

18cs
4 ,

f3 = −
jx

2�3cs

+
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6cs
2 +

Qxyy

6�3cs
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−
Rxxyy

18cs
4 ,

f4 = −
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2�3cs

+
Pyy

6cs
2 +

Qyxx

6�3cs
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−
Rxxyy

18cs
4
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Pxy
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Qxyy

12�3cs
3
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Rxxyy

36cs
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Pxy
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36cs
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Pxy
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+
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36cs
4 ,

f8 = −
Pxy

12cs
2 +

Qxyy

12�3cs
3

−
Qyxx

12�3cs
3

+
Rxxyy

36cs
4 . �A1�

These expressions can be used to obtain
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FIG. 5. Comparison of the centerline nonequilibrium normal
stress difference �Nneq�y=0� versus Knudsen number at Ma=0.1.
Notation as in Fig. 4.
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f5 − f6 =
Pxy

6cs
2 +

Qxyy

6�3cs
3

,

f5 + f6 =
Qyxx

6�3cs
3

+
Rxxyy

18cs
4 ,
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Qyxx

6�3cs
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+
Rxxyy

18cs
4 ,

f7 − f8 =
Pxy

6cs
2 −

Qxyy

6�3cs
3

. �A2�

These expressions can be used to write the boundary condi-
tions in terms of the moments. From the boundary condition
Eqs. �52� and �53�, we have

��f5 + f6��y=−L/2 =
�

18
+

�U1
2

18cs
2 ,

��f7 + f8��y=L/2 =
�

18
+

�U2
2

18cs
2 ,

��f5 − f6��y=−L/2 =
�U1

6�3cs

,

��f7 − f8��y=L/2 = −
�U2

6�3cs

. �A3�

Finally, using Eq. �A2�, we get

��Qxyy + �3csPxy��y=−L/2 = �cs
2U1,

��Qxyy − �3csPxy��y=L/2 = �cs
2U2,

�X1�y=−L/2 = ��cs
2�U1

2 − ux
2��y=−L/2,

�X2�y=L/2 = ��cs
2�U2

2 − ux
2��y=L/2. �A4�

APPENDIX B: IDENTITIES FOR THE BOUNDARY
CONDITION

First, we group the velocity set into three subsets: velocity
vectors with positive y velocity, negative y velocity, and zero
y velocity. In order to find out contribution to moments by
individual subsets, the following identities for the D2Q9
model will be required:

�
ciy�0

wi =
1

6
, �

ciy�0
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where c=�3cs.

APPENDIX C: DERIVATION OF THE RESULT OF
DISTRIBUTION FUNCTION SUMMATION FOR FLUID

CONFINED BETWEEN PARALLEL PLATES

First of all, we calculate

�
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since �ci·n�0wicix=0 and jy =0.
Next, term by term, by applying the identities from Eq.

�B1�, we have
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+ �Qxyy − jxcs
2��0 − 0�� = 0, �C3�
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which complete the proof.

APPENDIX D: MOMENTS OF FORCINGS

For the first type of forcing, Eq. �17�, we have
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For the second type of forcing, Eq. �18�, we have

�1�F�2�� = 2jxgx,

�2�F�2�� = jygx + jxgy ,
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